Mathematical theory of the waterbed
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The support of a loading body by a waterbed involves a rather complicated interplay between
tension (in an inextensible membrane) and buoyancy forces (in a fluid). In the idealization of
a slab symmetry, the equilibrium equations for the shape of the membrane can be solved to
give a two-parameter family of solutions. Mathematically, these parameters are (i) a
dimensionless measure of the degree to which tension T is important, and (ii) a dimensional
length (T/gp)'’* which sets the scale of the problem. The two parameters can be shown to
be physically equivalent to (i) the weight of the loading body and (ii) the fullness of the

waterbed. The problem of N bodies is also considered.

I. INTRODUCTION

A waterbed consists of a shallow rectangular trough
(“frame”) which contains a sealed, flat, flexible bag of
water (“mattress”). Typical dimensions of frame and
mattress are 1.8 X 2.2 X 0.25 m. When there is no load on
the waterbed, the mattress is more or less unstressed; it
contains a volume of water sufficient to fill the frame. The
water is supported below and on the sides by pressure on the
frame, transmitted through the mattress. The upper surface
of the water is approximately free, albeit covered by the
mattress’s flexible membrane.

Under load, the role of the mattress is more complicated,
and two further properties of the membrane become sig-
nificant: (i) although flexible, the mattress is inextensible,
so that the total surface area of the water mass is conserved
(as is its volume); (ii) the mattress is nowhere attached to
the frame, so that reduction of the frame’s normal force to
zero at any point will result in the membrane’s pulling away
from the frame and becoming a new free surface (generally
with nonzero stresses in the membrane).

In advertisements, objects are said to “float” on a wat-
erbed, and the bed’s support of a load is tacitly identified
with the buoyancy force that would support the same load
absent the mattress. In fact, the situation is somewhat more
complex than just flotation. (For example, if the membrane
were tough enough, an infinitely dense object would be
supported after sinking only a finite distance into the bed
and displacing only a finite volume of water.) Qualitatively,
the response of the waterbed to a significant load (with
volume ~0.1 that of the mattress, say, and density about
the same as water) is as follows: The loading object sinks
into the mattress by a fairly small fraction of its height. The
water displaced by the object and by the smooth “well”
around it forms a bulge in the mattress whose maximum is
located between the object and the frame in all directions.
The bulge pulls the side of the mattress away from the
frame down to some finite depth. The mattress surface is
under roughly constant tension everywhere above this level
of contact.

There are three distinguishable contributions to the
equilibrium upward force on the load, and they can all be
of comparable magnitude: (i) force transmitted to the load
directly by the tension of the mattress and its curvature
around the load; (ii) hydrostatic pressure exerted on the load
through the mattress from a water column rising to the
highest point on the bulge; and (iii) hydrostatic pressure
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from an additional “fictitious” head of water which rises
above the bulge due to the pressure transmitted by the
tension of the mattress to the upper surface of the water.

The first contribution is distinguished from the other two
by the fact that it concentrates at points of highest curvature
on the load. For example, it acts only on the edges of any
object with a flat lower surface. The second two contribu-
tions are proportional to area and increase with depth. They
are both pressure forces, but are distinguished by where they
originate. The geometrical height of the bulge determines
one contribution. If the topmost point of the bulge were
punctured and a standpipe attached, water would rise in the
pipe by the height of the other contribution, the fictitious
head.

In typical use, the waterbed is loaded by bodies which are
much longer than they are wide, oriented parallel to the
longest dimension of the frame. Further, the cross-sectional
shape of the load is only slowly varying along its length.
These facts suggest that the idealization of an infinitely long
waterbed, uniform along its length and uniformly loaded,
should preserve most features of interest in the system. This
expectation seems to be borne out by observation: the lon-
gitudinal curvature and tension in the mattress is generally
much less than the transverse curvature and tension, so each
transverse cross section is separately quite close to the
two-dimensional equilibrium of the idealized case. In the
remainder of this paper, we restrict ourselves to the two-
dimensional idealization.

II. SHAPE OF THE MEMBRANE

The following parameters enter into the analysis (see Fig.
1): T, transverse tension in the membrane; P(y), water
pressure as a function of height; p, density of water in the
mattress; g, acceleration of gravity; yo, ordinate of fictitious
head zero-pressure surface; y,, ordinate of membrane
maximum; y», ordinate of contact of membrane with frame;
a = (T/gp)'/2, dimensional length scale; £ = y/a (nondi-
mensional ordinate); £ = yo/a (nondimensional ordinate;
similarly &, £&); s = x/a (nondimensional abscissa); n = &
— £5; £ = &0 — & x = £ — £, The basic equation for the shape
of the membrane y(x) is obtained by equating the pressure
at depth y to the product of the membrane’s tension and
(negative of the) radius of curvature!:

P(0) — goy = —=Ty"/(1 + y'?)*/%. )
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Fig. 1. Cross-sectional view of a loaded waterbed (schematic). A standpipe
has been attached through the membrane to indicate the height of the
“fictitious head”™ yo which is a measure of internal pressure.

Here gpy is the weight of the water column from ordinate
zero to y and prime denotes d/dx. Except for boundary
conditions discussed in Sec. 11, this equation is the only
physics needed in the analysis; what remains is just math-
ematics.

If we substitute the dimensionless variables £ and s for
v and x, respectively, (1) becomes

fo—E=—¢"(1+£9)73/2 (2)

where

&0 = P(0)/(gpT) V2 (3)

Prime now denotes d/ds. The identification of £, as the
height of the fictitious head follows from the fact that the
pressure P(0) — gpy vanishes when £ — & vanishes (i.e., this
would be the free surface of fluid in a standpipe). Since Eq.
(2) does not contain s, it can be integrated once by the trick
of letting £ be a new independent variable. The result
contains a new constant of integration, denoted £,, and can
be written

g=( ! N @

[(£2 = £0)% — (¢ — £0)?)? )
At & = &, £ becomes infinite and the membrane has a
vertical tangent. That the point of contact with the side of

the frame must occur at this point can be seen as follows:

Below the contact point the membrane is pressed against
the side. If the contact occurred at any noninfinite value of
&, then the discontinuity in ¢ would imply a & function in
£” and in the radius of curvature; this could not possibly be
in equilibrium with a finite pressure. In actuality, the
membrane would pull away from the side starting at this
point and continuing down to some greater depth where it
could be vertically tangent.

The maximum height of the membrane occurs where ¢
= 0. By Eq. (4) this occurs at

&1 =% — [(%o — £2)2 — 2]V/2 &)

In Eq. (5), the choice of the first minus sign is uniquely
dictated by the condition that fluid pressure cannot be
negative at the maximum (i.e., £, — £ must be positive). The
choice of the third minus sign is necessary for a maximum
(as opposed to a minimum; see Sec. V).
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To proceed further, we need to integrate Eq. (4), which
depends on a single parameter 7 = £, — £; and can be re-
written either

§=—[4n% — 2/9?)"2 = 1]1/2 (6a)
or
X' = [4x~2x — 29)"2 = 1]1/2, (6b)

Equation (6a) can actually be integrated to give a compli-
cated closed-form expression involving elliptic integrals, but
this is not in itself very enlightening. An alternative strategy
is to examine the limiting cases of Eq. (6) as the parameter
n is varied.

A. Caseof g > 2; the highly stressed waterbed
If 7 > 2 then, from Eq. (5),

E—&H=1——-2)2~1/nKq (N

so the maximum relief of the membrane from frame contact
to bulge maximum is negligible in comparison with the
height of the fictitious head. Equation (6b) is now (to lowest
orderin 1/7)

X’ = [X_zﬂ_z - 111.2’ (8)
which is easily integrable, giving
?xi+ (s —1)2=1, 9

which is a circle of radius 1 /5. (The constant of integration
was chosen to make s = 0 at the point of contact x = 0.) The
physical meaning of this limit is that it corresponds to a
bulge so overfull of fluid that it takes on (in the limit) that
shape which maximizes its area at constant perimeter, the
circle. Below, we will examine the conditions of loading
which result in this case.

B. Case of n =~ 2; the lightly stressed waterbed

As 7 is decreased from the large values of the previous
case, the height of the maximum £, starts to approach the
zero-pressure surface £y. Naive extrapolation of the solution
(9) would indicate that £, reaches & whenn~ 1/1, i.e., at
n~ 1. Actually, the exact value, »2 = 2, can be read off from
Eq. (5). We are therefore led to examine the behavior of the
solution in a neighborhood of this value.

First, consider #? < 2. In this case, according to Eq. (4),
¢ is still positive at £ = £y. Above &g, there can be no fluid
(since the surface of zero pressure must be a free fluid
surface). The case 72 < 2 is therefore not relevant to the.
theory of the waterbed at all; it describes instead something
like the side bulge of a vinyl-lined swimming pool whose
flexible liner is attached to a frame above the water sur-
face.

Next, consider 52 slightly greater than 2. We can con-
veniently parametrize the excess of #2 over 2 by a positive
constant ¢,

A/pf=1-c (10)

In this case, Eq. (6a) becomes (to lowest order in ¢ and
lowest order in {/7)

F=(2-9¢'/2 (1)
whose solution is
¢ = €'/2 cosh(so — 5), (12)
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Fig. 2. Solutions to the waterbed equation, Eq. (6). The curves are labeled

by their dimensionless parameter 7. The vertical coordinate of each curve
is scaled to make x = ¢ at the top of the graph.

where s¢ (a constant of integration) is the abscissa of the
maximum £;. As the membrane maximum approaches the
zero-pressure surface, in other words, it flattens from a
circle to a cosh function. The location of the maximum sg
also moves to larger values of s as e is decreased. As a first
crude estimate, one can simply extrapolate the cosh function
beyond its region of strict validity, setting (at s = 0)

7~ V2 ~ /2 cosh(sy), (13)

which implies
so~ (1/2) In(2/e). (14)

However, it is not difficult to give a more accurate
treatment: If ¢ is small, then there is some range of { such
that

R IR (15)

This region is the overlap region of validity of two different
limiting approximations. When ¢ is in the range of in-
equality (15) or smaller, then Egs. (11) and (12) are valid.
When ¢ is in the range of Eq. (15) or larger, thén Eq. (6a)
has a nontrivial lowest order which does not involve ¢ at all.
Setting 72 = 2 in Eq. (6a) gives

The constant of integration has been chosen to make ¢
V2ats=0.

Now we can compare Egs. (17) and (12) in their region
of overlap [Eq. (15)] and (using cosh~'x = In 2x) easily
read off an accurate value for s,

so0=1(1/2)In(2/€) + (5/2) In2

— V2 —=cosh~'v2, (18)
which differs from our crude estimate {Eq. (14)] only by
a constant. Equations (10), (12), (17), and (18) describe
completely the case n =~ 2. That this case corresponds to a
lightly stressed waterbed is seen in the fact that the cosh
functions {Eqs. (12) and (17)] give a very flat upper surface
to the membrane, implying that the surface is very nearly
at zero pressure (has little pressure exerted on it by tension
in the mattress).

Figure 2 plots the functions £ (or ¢) as a function of s, for
various values of 5. For these curves the exact Eq. (4) has
been integrated numerically. The asymptotic limits that we
have derived here are indicated on the figure.

IIl. RESPONSE TO A CENTERED LOAD

We can now see what happens when a load is placed in
the middle of the waterbed. The width of the load and bed
are fixed. There is a two-parameter family of possible
membrare configurations: First, the shape of the membrane
depends on 7; second the relative scale for this shape de-
pends on a = (T/gp)!/2. Neither % nor a is known a priori.
In Fig. 3, therefore, we draw representative configurations
from the entire a, n plane, for the case of a rectangular
load !4 the width of the waterbed. To decide which con-
figuration is the “correct” one, we must impose three
physical constraints: First, the perimeter of the mattress

¢=[(1-¢/2)2=1]'/2, (16) (including its shape around the load) must be correct. This
constraint can be used to establish the vertical position of
which can bé integrated? and simplified to the lower (flat) surface which is in contact with the bottom
of the frame. (This surface is not shown in the figure.)
s =cosh™'(2/8) + 2(1 — $2/4)/2 = V2 Second, knowing the position of the lower surface, we must
~cosh™1v2 ({>» €/2). (17)  choose a configuration with the correct total volume (which
>—|L
(unit of length)
r 0.260: J
a2 A :?:" f,'.'g'g"
Fig. 3. The two-parameter family
M of solutions for a load of given size
MRy a08 osl.5u =5.0u and shape. The weight of the load
! ™ s 30 and the fullness of the bed vary over
the plane of solutions. See text for
KM /ﬁ-/ﬁ details.
oR, ke g et
G ey i m
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depends on how full the bed is). Third, the sum of upward
forces on the body must equal its weight. These latter two
physical parameters, the fullness of the waterbed and the
weight of the object, are thus equivalent to the mathemat-
ical parameters a and #. Lines of constant fullness or weight
are not lines of constant a or n, however. In the figure, the
direction of increased load at constant volume is roughly
from upper left to lower right, while the direction of fuller
mattress at constant load is roughly from lower left to upper
right. The extreme-upper-right configuration is that of a
mattress filled to such an extreme overpressure that it
bulges into a semicircle. Other figures at the extreme right
correspond to extreme overpressures induced by very heavy
objects placed on beds of varying fullness; the membrane
surfaces are close to segments of circles, and the object is
supported by tension forces and fictitious-head pressures
of comparable magnitude. In the opposite limit, the con-
figurations on the extreme left are supported exclusively by
the buoyancy force of the geometrical head, corresponding
to floating objects on a very underfilled mattress. When a
is such as to make the distance from object to frame exactly
250, then a is a bad “coordinate”™ for the plane of solutions,

since it does not define a unique vertical height for the
object. Any vertical height does define a unique a, however.
The lower-left example in the figure illustrates this de-
generacy, which could also have been similarly shown at
the bottom of each column of figures.

To find the correct solution for some particular finite
weight and fullness one proceeds as follows: Apply the pe-
rimeter constraint and draw a family of configurations in
the a, n plane. Next, apply the volume constraint to nar-
row down the family to asingle parameter. Consider each
member of the sequence in turn: from g, p, and a, compute
T = a?gp, the tension. From this and the bend of the
membrane around the load, compute the upward tension
force. From its position of contact with the side (£,), n, and
a, compute ¥, = a(&, + n), the height of the fictitious head.
Using this head, compute the upward pressure force. The
unique solution is that one which matches the sum of
pressure and tension forces to the weight of the object. The
kind of search described here is readily implemented as an
iterative numerical procedure.

IV. GENERAL EQUATIONS FOR MANY
BODIES

Figure 4 shows a more general case with several objects
at specified horizontal positions. We want to see that the
solutions already derived are sufficient to treat this case,

of
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Fig. 4. Schematic of the “/N-body problem” showing variables that enter
the analysis.
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i.e., that we have as many equations as unknowns. Suppose
that there are N objects. Then the unknown quantities are
dW, ..., dM, the heights of the ob]ects, s, ..., stM, the
abc1ssas of the N + 1 bulge maxima; &2, E%N ), the or-
dinates of these maxima; n(0, . . ., 7, the shape param-
eters for each bulge; T, the mattress tension (which with
g-and p gives a); and &, the height of the fictitious head.
There are 4N + 5 unknowns in all.

The equations to be satisfied are: weight balance on N
objects; tangency of the left and right sides of each bulge
to its corresponding object or to the side of the frame [2(/V
+ 1) conditions]; Eq. (5) applied to each bulge with the
single value of & but individual values of £” and &, — £
= () (N + 1 conditions); volume of mattress correct; and
perimeter of mattress correct. These total 4V + 5 equations,
and allow, generically, a unique solution of the problem.

Note that we are not able to demand horizontal force
balance or torque balance on the objects. There are not
enough unknowns to support these extra conditions. In
general, there will be a tendency for bodies on a waterbed
to slide and/or roll horizontally in one direction or another.
(In practice, friction keeps objects from sliding, and a slight
ihequality in the tension of different bulges brings the
horizontal force into balance; for bodies other than circular,
a similar small readjustment of angle brings them into
torque balance; circular bodies do, in fact, roll on a wat-
erbed.) An important unsolved problem in waterbed theory
is the question for two bodies: for what range of mattress
fullness and separation do flat bedies tend to slide toward
each other? (Experimentally, bodies tend to separate when
they start far apart, and they tend to attract when they both
start close to the middle; but this behavior is evidently a
function of mattress fullness as well.)

V. GENERALIZATIONS AND UNSOLVED
PROBLEMS

We have assumed above that when £(s) becomes tangent
to a vertical line (at £ = £,) it joins onto a side of the frame.
Another mathematical possibility is that it bends under to
form the free, curved lower surface of a flexible water
mattress which has been placed directly on the floor (rather
than in a frame). In this case, Eq. (4) continues to hold, with
the square root on the left-hand side changing sign at £
= £,. The boundary condition of a flat floor is now imposed
at the point where the membrane becomes horizontal. £ =
0, which occurs at some £3 [compare Eq. (5)].

&=t — [(bo— £)2 +2]1/2 (19)

It is the third sign which determines whether £ = Oisa
maximum (top surface) or minimum (bottom surface). One
can explore lower-surface solutions analogously to our ex-
ploration of the upper surface in Sec. II.

There are several practical disadvantages to a waterbed
without a frame: (i) The mattress is subject to higher
stresses (there is no limit analogous to a load floating on a
loose mattress). (ii) The mattress as a whole tends to “walk”
when the load is unsymmetric; there is a net unbalanced
horizontal force on the mattress. It is an interesting exercise
to work out these effects quantitatively. .

A most basic unsolved problem is: How full should a
waterbed be? Too full, and the tendency is for the load to
slide off. Too empty, and the membrane climbs unpleasantly
up the side of the load. Suppose that “perfect fullness” is
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to have the membrane vertically tangent at just the bottom
edge of each flat body. Can this condition be achieved si-
multaneously for more than one body? For bodies of dif-
ferent sizes or weights? At different separations?

In the limit of p — 0, our theory reduces to the theory of
the air mattress. It is not hard to see that the membrane is
always circular in this case (3 >> 2). An air mattress is not
nearly as comfortable as a waterbed. Why? A “mercury-
bed” where p becomes large also seems unpromising. Evi-
dently, for comfort, p should be close to the density of the
body on the bed. Is this easily explained?
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